Molecular charge-transfer interaction with single-layer graphene
نویسندگان
چکیده
منابع مشابه
Charge-carrier screening in single-layer graphene.
The effect of charge-carrier screening on the transport properties of a neutral graphene sheet is studied by directly probing its electronic structure. We find that the Fermi velocity, Dirac point velocity, and overall distortion of the Dirac cone are renormalized due to the screening of the electron-electron interaction in an unusual way. We also observe an increase of the electron mean free p...
متن کاملAqueous proton transfer across single-layer graphene
Proton transfer across single-layer graphene proceeds with large computed energy barriers and is therefore thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase th...
متن کاملCharge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.
Junctions between a single walled carbon nanotube (SWNT) and a monolayer of graphene are fabricated and studied for the first time. A single layer graphene (SLG) sheet grown by chemical vapor deposition (CVD) is transferred onto a SiO₂/Si wafer with aligned CVD-grown SWNTs. Raman spectroscopy is used to identify metallic-SWNT/SLG junctions, and a method for spectroscopic deconvolution of the ov...
متن کاملCharge carriers in few-layer graphene films.
The nature of the charge carriers in 2D few-layer graphites (FLGs) has been recently questioned by transport measurements [K. S. Novoselov, Science 306, 666 (2004)10.1126/science.1102896] and a strong ambipolar electric field effect has been revealed. Our density functional calculations demonstrate that the electronic band dispersion near the Fermi level, and consequently the nature of the char...
متن کاملGating of single-layer graphene with single-stranded deoxyribonucleic acids.
Patterning of biomolecules on graphene layers could provide new avenues to modulate their electrical properties for novel electronic devices. Single-stranded deoxyribonucleic acids (ssDNAs) are found to act as negative-potential gating agents that increase the hole density in single-layer graphene. Current-voltage measurements of the hybrid ssDNA/graphene system indicate a shift in the Dirac po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Experimental Nanoscience
سال: 2011
ISSN: 1745-8080,1745-8099
DOI: 10.1080/17458080.2010.529174